Free Boundary Problems for Nonlinear Wave Systems: Interacting Shocks
نویسندگان
چکیده
منابع مشابه
Free Boundary Problems for Nonlinear Wave Systems: Mach Stems for Interacting Shocks
We study a family of two-dimensional Riemann problems for compressible flow modeled by the nonlinear wave system. The initial constant states are separated by two jump discontinuities, x = ±κay, which develop into two interacting shock waves. We consider shock angles in a range where regular reflection is not possible. The solution is symmetric about the y-axis and on each side of the y-axis co...
متن کاملGlobal Stability for Thermal Convection in a Couple Stress Fluid Saturating a Porous Medium with Temperature-Pressure Dependent Viscosity: Galerkin Method
A global nonlinear stability analysis is performed for a couple-stress fluid layer heated from below saturating a porous medium with temperature-pressure dependent viscosity for different conducting boundary systems. Here, the global nonlinear stability threshold for convection is exactly the same as the linear instability boundary. This optimal result is important because it shows that lineari...
متن کاملInsight into the Boundary Layer Flows of Free Convection and Heat Transfer of Nanofluids over a Vertical Plate using Multi-Step Differential Transformation Method
This paper presents an insight into the boundary layer of free convection and heat transfer of nanofluids over a vertical plate at very low and high Prandtl number. Suitable similarity variables are used to convert the governing systems of nonlinear partial differential equations of the flow and heat transfer to systems of nonlinear ordinary differential equations which are solved using multi-s...
متن کاملNonlinear Two-Phase Stefan Problem
In this paper we consider a nonlinear two-phase Stefan problem in one-dimensional space. The problem is mapped into a nonlinear Volterra integral equation for the free boundary.
متن کاملPositive solutions for nonlinear systems of third-order generalized sturm-liouville boundary value problems with $(p_1,p_2,ldots,p_n)$-laplacian
In this work, byemploying the Leggett-Williams fixed point theorem, we study theexistence of at least three positive solutions of boundary valueproblems for system of third-order ordinary differential equationswith $(p_1,p_2,ldots,p_n)$-Laplacianbegin{eqnarray*}left { begin{array}{ll} (phi_{p_i}(u_i''(t)))' + a_i(t) f_i(t,u_1(t), u_2(t), ldots, u_n(t)) =0 hspace{1cm} 0 leq t leq 1, alpha_i u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003